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E. SUMMARY 

This report describes the investigation, design and test of two 

different compression springs that were developed for use in a 1000°F 

vacuum environment and a minimum life of 10,000 hours. The springs were 

for use in the Breaker and Contactor being developed under Contract 

NAs3-9121, for use in Space Nuclear Electrical Systems. 

The environment tcmpcrature limited the materials which were avail- 

able as candidates l'or the compression springs. A sui table candida te 

material must have low relaxation over a long time at the operat.in< 

temperature of 1000°F, yet must be workable so the desired design charac- 

teristics can be obtained within the available space. 

Characteristics of many possible materials were reviewed in detail, 

but Inconel 718, with a suitable initial temper to permit cold forming, 

followed by a triple heat treatment, was the preferred material. 

Samples of the springs to be used in the Switchgear units were built, 

carefully checked for load-deflection characteristics, and then endurance 

tested under normal full load,and at solid height,at 1050°F and 1150:'F. 

Lengths of the springs at "no load", checked before the test series, and 

again after various periods of heat soaking at test temperature, were 

used to determine the relaxation. Final load-deflection data is compared 

with the original spring conditions, to indicate suitability of the Inconel 

718 for long time operation in a 1000°F environment. 



II. INTRODUCTION 

Switchgear units (AC Breaker and DC Contactor) under development for 

use in a space nuclear electrical system , required compression springs 

which would provide long life while in a 1000°F ambient temperature. 

Furthermore, various restrictions on spring dimensions, based on available 

space and motion of the switchgear units, required new design nppr~chcs 

and development of spring characteristics tiich were not available in 

published literature or the files of spring manufacturers. 

Waterials available for high temperature use are quite limited. 

Possible candidates include Inconel 718 and X750, Rene'41, A286 Stainless 

Steel, Cobalt base L608 and S816, Haynes 25, and Udimet 700. Data from 

wire manufacturers for the size of springs involved in applications such 

as the switchgear units is too limited to provide more than general 

guidance in the high temperature design area. 

A summary of data obtained on high temperature spring material from 

suppliers and spring manufacturers, is presented in this report. Spri II< 

design calculations with several material parameters are used to pro\:idc 

the best compression springs with maximum force in a limited space. The 

selected material and design was used to build samples of two sizes of 

springs as shown in Figure 1. 

Tests of the samples determined creep performance data over a 2000 

hour period at temperatures of 1050'F and 1150°F. The resulting data 

provides definite new guidelines for selecting material and designing 

long life springs for a 1000°F environment. 



III. SELi?CTION AND PREPARATION OF CANDIDATE MATERIALS ___1_1_ --~ - - 

The high temperature springs are intended for use at 1OOO'F to 1050°F, 

in vacuum, for periods of time in the order of 10,000 hours. This required 

that the springs retain their load carrying capacity under these time- 

temperature conditions with minimum loss due to stress relaxation. A 

service temperature of 1000°F for high performance springs required to 

operate at or below a recommended nominal of 40,000 psi stress, with less 

t.han a 10% load relaxation in thousands of hours, is a most scverc require- 

ment demanding the use of a material with excellent stress relasntion 

cliaracteriscics. 

The high temperature strength properties of metals are measured in 

terms of their elastic and plastic characteristics. Short time tensile 

tests indicate the recoverable elastic strain (and stress) which the 

material will support; the proportional limit indicates the elastic 

reco\,erable stress and various levels of the material at minor levels of 

permanent deformation. In the temperature range from about 900 to 1300°F 

many of the high temperature superalloys make a transition from elastic 

llmitin;: properties to plastic, or creep, limiting properties. This trnns- 

ition temperature is defined as the equi-cohesive temperature; below this 

temperature the short time yield strengths are the limiting material 

property: ab0i.e this temperature long time creep processes prevail in 

defining strength characteristics. Longer periods of test time tend to 

lower this transition temperature. 

Creep characteristics are reported as the stress required to produce 

a total plastic strain of a given percentage under a steady load at a 

de.5 i 1.7~ ted .7 temperature and test (time) duration. Plastic strain under 
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load can also be considered as the internal strain which occurs in a metal 

after it is initially strained elastically and held in that position at 

elevated temperature for a period of time; creep occurs within the specimen, 

elastic strain is converted to plastic strain, and the stress in the metal 

member decreases. This stress relaxation phenomenon occurs in bolts and 

springs which are initially installed under relatively high elastic stress 

at elevated temperature but which slowly lose their stress carrying capa- 

bility through the internal creep process. 

While the tensile and steady load creep characteristics are generally 

well established for most of the current high strength superalloys, stress 

relaxation data required for the design of high temperature springs and 

bolts is not as well documented; frequently this data must be developed at 

the specific design conditions. Nevertheless, a knowledge of the elastic 

(yield strength) and plastic (rupture strength) properties of alloys in 

the intended temperature range is a useful starting point in the selection 

of spring materials. These properties are indicated in Figures 2 and 3 

for the following alloys which have been considered for the two springs 

that are described in this report. 

1. Inconel X750 

2. Inconel 718 

3. Rene'41 

4. Udimet 500 

5. Udimet 700 (Astrolloy) 

6. Stellite L605 

7. A286 Stainless 

The chemical compositions of these alloys are shown in Table I, while 

mechanical properties are shown in Table II. 
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All the alloys have appreciable high temperature yield strengths, 

and all the age hardened alloys offer reasonable thermal stability in 

this 1000-1200°F range SO are therefore worthy of consideration. Inconel 

X750 in the cold worked and aged condition has yield strengths appreciably 

higher than that indicated in Figure 2, and as spring temper wire (65% 

cold worked and heat treated) it develops a 0.2% yield strength at room 

temperature of over 200,000 psi. L605 alloy wire, cold drawn to 20-25% 

reduction in area, will also develop strengths nearly equivalent to the 

very high strength age hardenable superalloys. The high strength cold 

worked spring alloys such as Inconel X offer relatively more stable spring 

properties at reasonable working stress levels below 1000°F. However, 

near or above that temperature, thermal instabilities in microstructure and 

in creep-relaxation processes severely limits their usefulness as deter- 

ioration in spring performance occurs with increasing temperature, time. 

and stress. Figure 3 relates a parameter (temperature and time combined) 

to stress, and shows how the stress rupture properties decrease with increase 

of the parameter. 

An extensive amount of information on the subject of Inconel and 

Inconel X springs, with design guidelines, processing, and heat treatment 

considerations, stress relaxation data and recommended stress levels is 

contained in an available technical bulletin (Reference 1). A review of 

various available materials for springs to be used at temperatures above 

400°F is given in a recent technical article (Reference 2). 

Bcsemer and Stanton (Reference 3) have summarized Ihe stress rclasallon 

characteristics of several high temperature spring nllovs nt tempcraturcs 

up to 1400='F. Some of the data is included in Table III. Note that the 

relaxation of the springs is indicated by percentage of loss in load after 
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compression to various stress values. The percent load loss is relatively 

high for the L--605 and Tnconel X-750. The text indicates that even at 

relatively high stress levels, for a 600°F test a 3-5% loss in load after 

140 hours is typical, and the superiority of Inconel X750 at this tempera- 

cure is indicated by its load loss of 1% or less. But at 1000°F. as shown 

in Table III, the percentage load loss for Inconel X750 increases signifi- 

cantly and A-286, Rene' 41, and L605 are equivalent or superior. Above 

lOOO;'F, the percentage load relaxation increases rapidly even for short 

test periods and relatively low spring stresses. 

The need for helical spring materials having better stress relaxation 

characteristics than Inconel X750 for .jet engines prompted a comparative 

study recently hy the Aircraft Gas Engine Division ol' Gc,ncral F:lc(.l-ric, 

of Inconcl X750, Inconel 718, Rene' 41, U500, U700 and 1,605 for small helical 

springs. Some of the data which has been made available shows that in 100 

hour load relaxation tests at 1000°F the most relaxation resistant alloys 

were Inconel 715, Rene' 41, and U500. All the alloys had grain size in 

the ASTM 3-4 or 3-5 range and were optimally processes. The wires were 

made from vacuum consumable electrode remelted or double vacuum melted 

material; wire drawing induced 50-60% initial cold work in Inconel X750 

and Inconel 718, 25% cold work in Rene' 41, U500, U700. 

The springs made from these alioys were subsequently heat treated 

through recrystallization/solution treatment and aging. The L605 allo! 

was prepared in spring form with 25% cold work followed by a stress relief 

heat treatment. The springs had a wire diameter of 0.080 inches, an OD 

of 3/4 inch, and a free length of slightly over one inch;and a load of 

about 13 pounds in the test condition. A summary of the relaxation 

testing results for these springs is listed in Table IV. A more complete 
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list of the Tnconcl 718 relaxation data from the information that was made 

available, for springs at 1000°F, llOO°F, and 1200°F. are shown in Table V. 

Other studies that have been made of the long-time stability of 

Inconel 718 at temperatures from 1000 to 1300°F while under stress h:l\.c 

also beon reviewed. Evaluation included optical and electronic microscop!.. 

X-ray diffraction, and X-ray fluorescence methods of phase analysis bt>fc\rc 

and after exposure. Except for the expected over aging at 1300°F. there 

were no detrimental instabilities observed. The exceptional stability of 

this nlln~ in the temperature range under consideration offers substantial 

reasons for its excellent performance, and is a major reason for considering 

Inconel 718 to be superior to the other alloys for the Switchgear spring 

applications. 
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IV. SPRING DESIGN 

The original springs made of Inconel X-750 were found to have relaxed 

excessively after 1000 hours in vacuum and at a temperature of 1000 to 

1050°F. Maximum stress on these springs was about 30,000 psi. 

Therefore in designing the springs using the preferred Inconel 718, 

every effort was made to reduce the normal room temperature stress to less 

than 25,000 psi, with a maximum of 30,000 psi when fully compressed. A t. 

this low stress level it was felt that the relaxation of Inconel 718 

should be minimal and acceptable over a long period of time. 

Furthermore, the new springs were designed to have the same configu- 

ration, i.e., round wire compression springs, and as near to the same size 

as possible, so they could be immediately applied to the switchgear program. 

The basic formulas for round-wire compression springs are as follows: 

S 5 Kw; fGd4 = andP = - 
nd 8D3N 

The symbols used in these formulas, and the spring calculations, are 

shown below. 

G 

O.D. 

I.D. 

d. 

D. 

N 

P 

f 

L 

S 

T 

kW 

SYMBOLS 

Shear Modulus, lo6 psi 

Outside Diameter, in. 

Inside Diameter, in. 

Wire Diameter, in. 

Mean Diameter (O.D.-d), in. 

Number of active coils 

Load, lb. 

Deflection, in. 

Length, in. 

Stress, LO3 psi 
Temperature, OF 

Wahl Correction Factor 
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SUBSCRIPTS: 

1 Indicates initial load condition 

2 Indicates maximum working condition 

3 Indicates solid height 

The Wahl correction factor corrects the computed stress for curva- 

ture of the wire and shear load. This formula was published in "hlechanicnl 

Engineering" by Dr. A. M. Wahl. The correction factor is a function of 

the spring index D/d, and is defined as follows: 

Kw = 4 D/d - 1 .615 
4 D/d - 4 +m 

These formulas were used to calculate the forces and stresses in 

designing the springs. Initial calculations were based on a room temp- 

erature modulus, and the final designs were checked for maximum stress at 

1200LF. 

Three springs were designed, and two were tested. This information 

will cover the two that were tested, and will be designated as Design A - 

and Design B. They are shown in Figure 1. - 

Some of the iterations in the design of A are shown in Table VI. The - 

first cut was made using the dimensions of the previously tested Inconel 

X750 springs but with the new (Inconel 718) material (refer to column 1). 

Force levels were low, SO free length was increased (column 2). then wire 

diameter was increased (column 3). Stresses were low (23,000 psi when 

solid) so spring rate (P/f - load/deflection) was increased to 10.6, 

leading to the final design (column 4). This design was then recalculated 

to check stress at 1200°F (column 5) which was above the design temperature 

but would thus provide additional operating margin. Final design (column 4) 

yielded a spring with a nominal (working) force of 7.9 pounds (P,) and a 

stress of 19,000 psi at room temperature. 
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The design work on spring design B is summarized in Table VII ? which - 

shows some of the iterations investigated. The first c:llt again was the 

change in material only (column 1). Force level was so high that the 

decision was made to Lose two different springs in place of a single one. 

with the two springs mounted concentrically. Thus, the second dcsi;n 

iteration (column 2) shown has the I.D. opened up to clear the original 

diameter spring. These values had to be adjusted slightly (column 3) 

to agree with inner spring on operating length and solid height, and 

provided a maximum operating stress of 25,000 psi. After this adjust- 

ment, spring characteristics were checked at 1200*F, and as noted 

(column 4) operating stress was 20,000 psi at working height and the 

high temperature. 

Based on all available data, these springs (dcsiKns A and 13) wcrc - - 

conservatively designed and should provide the desired forc*cs o\'er a 

long period of time at 1000'F. Samples were therefore obtained for 

test purposes. 

10 



v. TEST SAMPLES, APPARATUS, AND PROCEDURES 

A. Test Samples 

Test plans called for endurance testing a total of 16 springs, 8 each 

of Design A and EJ, built in accordance with the parameters described in - 

Section IV. The springs were ordered from the Wallace Barnes Division 

of the Associated Spring Corporation, in Bristol, Connecticut. 

The springs were specified to be made of Inconel 718, spring temper, 

with a 25 to 35% reduction to obtain the spring characteristics. After 

forming the springs (and before final grinding of the ends) the springs 

were to be "triple" heated as follows (in an unstressed condition). 

1 - 175O'F for 1 hour and cool to room temperature. 

2 - 1325OF for 8 hours and furnace cool at lOO'F/hour to 

3 - 1150°F then hold for 8 hours and furnace cool to room temperature. 

Sote: The heat treatment was done in vacuum at the General Elec*tric 
Material Development Laboratory Operation in Evendale. 

Xechanical specifications for the springs are listed below: 

(G.E. Dwg. #165A53006 (G.E. Dwg. #165A5297) 

Maximum Outside Diameter 

Minimum Inside Diameter 

Free Length 

Maximum Solid Height 

Diameter of Wire 

Active turns 

Gradient 

Operating Condition 

Initial Length 

Final Length 

Minimum Operations (no set) 

1.075" 

.85" 

3.250" (Ref.) 

2.205" 

0.105 + .OOl" - 
19 

10.6 lb/in. (Room Temp) 

(Room Temperature) 

2.875" (3.7 to 4.0 lb.) 

2.500" (7.5 to 8.0 lb.) 

500 

2.40" 

2.00" 

1.77" (Ref.) 

1.05" 

0.192 + .OOl" - 
3.6 

48 lb/in. (Room Temp.) 

(Room Temperature) 

1.312" (21 to 24 lb.) 

1.188" (27 to 30 lb.) 

500 

11 
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A total of 16 Design A and 12 Design _B were obtained from the spring - 

manufacturer, out of a total of 24 Design A and 18 Design B springs which - - 

had hcen wound and heat treated. Final selection of those that best met 

mechan:cal specifications provided the total for this test program, while 

the balance were used for other test activity. 

hlaterial for the springs was obtained from Techalloy Co. A certified 

material analysis provided the following characteristics of the w-ire used 

to make the springs. 

Wire Diameter 

Tensile Strength 

Chemical Analysis 

Carbon 

Chromium 

Iron 

Titanium 

Columbium 

Aluminum 

Molybdenum 

Manganese 

Nickel 

Copper 

Silicon 

Sulphur 

Data from the ana yses of the materials used may be compared with 

Design A Design B 

0.105" 0.192" 

187,500 psi 147?000 psi 

(Heat #7120 EV) (Heat #7118 EV) 

0.05 0.05 

18.74 18.75 

18.91 18.77 

0.84 0.87 

5.15 5.10 

0.30 0.30 

3.05 3.09 

0.21 0.21 

58.29 52.37 

0.04 0.04 

0.33 0.33 

0.007 0.007 

Typical 
Composition 

NIL 

18.4 

19.2 

0.9 

5.3 

0.5 

3.1 

0.2 

52.0 

0.1 

0.3 

NIL 

the expected typical values shown in Table I, and reproduced in the third 

column above. The results were within acceptable limits. 

The completed sample springs were checked to determine load deflection 

characteristics in the "as received" condition and before starting the 
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test program. The curves in Figures 4 and 5 indicate the load-length 

(mechanical) characteristics of the springs (Design A and B) before - 

starting the endurance tests. Data supporting the curves is given in 

Tables VIII and IX. 

After the heat treat cycle, a sample was cut from the end of a 

Design A and a Design B spring for sectioning and photomicrographs. The 

surfaces of the sections (at 100X and 1000X) of the Design A sample are - 

shown in Figure 6. Sections (at 100X and 1000X) of the Design B sample - 

are shown in Figure 7. 

Photomicrographs of sections from both Designs of springs after the 

1000 hour test are included in Section VII of this report to provide for 

a direct comparison with the material condition before testing started. 

B. Test Apparatus and Set-Up 

The endurance test was planned so as to obtain data at two tempera- 

tures, 105O@F and 1150°F with springs at both the maximum working height 

and at solid height. It was also planned to obtain part of the data after 

a series of short periods of testing, and the balance after a relatively 

long period without interruption. 

To accomplish the goals, four fixtures were built, each holding four 

sample springs (2 of Design A and 2 of Design B). They were made of - - 

stainless steel, as were the washers and bolts used to compress the 

springs. Details of a fixture and the springs in their test condition, 

are shown in Figure 8. Figure 9 shows a test fixture with 4 sample springs 

on the fixture, ready for placement in an oven for endurance testing. 

All the springs were marked on the flat (ground surfaces - each end) 

with an identifying number using a vibrating stylus. The springs were 

13 
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then carefully checked to determine their free length using a comparator 

for the Design A springs, and a vernier caliper for the larger diameter - 

Design B springs. The springs were also checked to determine the force - 

in pounds when compressed to the maximum working height and the solid 

height. Data Eor the springs prior at start of the tests, is given in 

Tables VIII and IX. 

The basic spring data, along with a designation of the fixture to 

which each spring was assigned, the test loads, and the test temperature, 

is summarized in Table X. The footnotes indicate in detail the tempera- 

ture applied to each fixture (and related springs) as well as which ones 

were tested for long or short periods between the measurements to check 

changes in the spring lengths. 

Two small furnaces, heated by electrical resistance wire elements, 

were used. Each furnace held two fixtures with a small clearance top and 

sides during the endurance tests. The controls were capable of holding 

the test sample area to the desired temperature (1050°F or 1150°F) within 

a range of + lOoF. A thermostat in the oven was used for the power control, - 

and the furnace temperature capability was checked with a calibrating 

thermocouple mounted on a metal plate in the oven, prior to start of 

the test. 

Each spring was set up for test by adjusting the holding bolt until 

the springs were compressed to the desired length, as mcnsured bv a cali- 

brated vernier caliper. After each test period the free length of the> 

springs was measured in the same way as for the initial free length (with 

a comparator gage for Design A and vernier caliper for Design B). - - 

Also, prior to starting the first test, each spring was checked to 
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determine its load-deflection characteristics. The information is shown 

by the curves in Figures 4 and 5. Similar data was obtained at the close 

of the tests, as will be described in Section VI of this report. 
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VI. TEST RESULTS AND DISCUSSION 

A. Test Program 

A schedule was established to provide a variety of test conditions 

for the sample springs. Half of the samples of each design were tested 

at 1050°F and half at 1150°F; half of each temperature group was held at 

the "workingW load length and the others at full solid compressed height. 

Some were checked intermittently (interrupted after approximately 100, 

200, 400, 600, 800 and 1000 hours of test) while others were checked only 

after 1000 and 2000 hours of testing. 

The basic information on the spring test arrangement is given in 

Table X. It indicates sample reference number, lengths, test fixture 

used for each sample, and test load. The test schedule was established 

so the "interrupted" readings (fixtures II and IV) could be made during 

normal working hours, after approximately the test periods desired. At 

each time of measurement the springs were carefully checked for overall 

length and then returned to the proper location and test condition on 

the fixtures. 

B. Test Results and Discussion 

Results from the "interrupted" endurance tests are summarized in 

tables XI and XII. Table XI shows the data obtained on 2 samples each 

of Designs A and E, at 1050°F and two load conditions, after short inter- - 

vals of test time. Table XII shows data on 2 samples of Designs A and B - - 

but at 1150'F after short time intervals. Relaxation (%) as related to test 

time is plotted to provide the curves shown in Figures 10 and 11. The single 

circles and squares show the data for the "interrupted" tests. 

The data in Tables XI and XII shows that the relaxation obtained in 

the first 100 hours of testing at 1050°F was more than half of the total 

16 
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relaxation that was measured over the 2000 hour period. Furthermore, 

after about 400 hours, there was little additional relaxation for 

springs tested at 1050°F. Refer, for example, to sample #2 with 3.9% 

relaxation after 101 hours, but only 6.6% after 2000 hours in a temp- 

erature of 1050'F. 

On the other hand, tests in the 1150°F environment showed that relax- 

ation continued at a rapid rate, and after 2000 hours the total was nearly 

2-l/2 times the amount obtained in the first 1000 hours. The initial 

rate of relaxation was also much higher on the springs in the 1150°F 

temperature than was the rate on the 1050°F springs. 

Results from the long time test periods (1000 hours each) are summarized 

in Tables XIII and XIV. This data shows the change in length and relaxation 

(%) for 4 samples each of Design A and _B, at 1050°F (Table XIII) and 1150°F 

(Table XIV), and two load conditions, after 1000 and 2000 hours of testing. 

The information is plotted with the other data (curves) in Figures 10 and 11 

to provide an easy comparison of the various results. The uninterrupted data 

is indicated by double circles and squares. -- 

The data shown in Tables XIII and XIV with springs which were cooled to 

room temperature for measurements only once during the 2000 hours tended to 

confirm the results from the test series which involved frequent c.ooling to 

room temperature for measurements. However, for the 1150°F condition (Table 

XIV) the relaxation was lower for the springs having only one interruption 

from temperature as compared with those having the frequent interruption 

(Table XII). 

Load-deflection data was also obtained on two each of spring samples 

of Designs A and B after the 1000 hour endurance test at 1050°F. Data is - - 

shown in Table XV. Load-length characteristics of these four springs are 

shown by the curves in Figures 12 and 13, indicating the initial (before 
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test) condit-ion and the characteristics after t:hc 1000 hours at tempera- 

ture. lengths are calculated from the free length values (before and 

after the tests). 

Curves showirlg relaxation (%) for the test periods arc incbl.udcd as 

Figures 10 and 11 for spring designs A and _B, respectively. :I fP\! - 

discontinuities will be noted from the plotted data, principally in 

connection with the 1150°F tests. However, the trends are generally 

consistent and provide enough basic guidance to determine that operation 

at 1050'F is satisfactory, but probably not at 1150"F,for any long time 

application due to excessive relaxation. 

It is apparent from a comparison of the curves in Figure 12 and 13 

that there is very little difference in the change of load-length relation- 

ship hetwccn springs that were tested at the "workinK" length and ;lt "solid" 

height. Furthermore, the spring properties have not been affected as 

indicated by the fact that the load-deflection curves "before" and "after" 

relaxation testing are essentially parallel. 

The endurance test results (Tables XI to XIV ), plotted to provide 

the cur\'es of Figure 10 and 11, indicate that Inconel 718 will provide 

springs with relatively low relaxation when operated in a temperature of 

1050°F. However, the springs tested in temperature of 1150°F had high 

relaxation. indicating this material should be used with much caution at 

or above this hir:h temperature. 

Sections of small pieces cut from spring samples #4 (Design A) and - 

#14 (Design B) after 1000 hours at 1050°F were polished, etched and - 

'recorded at 100X and 500X magnification. The results are shown in Figures 

14 and 15, and indicate that essentially no change has taken place in the 
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basic properties OF the material, while under the stress and temperature 

conditions of this test;. 

The results shown by Tables XI, XII, XIII, and XIV, when compared 

with limited published data on relaxation, indicates a somewhat higher 

\.nlue was obtained than should be expected for the relatively low 

stresses in these springs. Reference to the design data in Tables VI 

and VII show that maximum (solid height) shear stress (aL 1200°F) was 

calculatorl as 22,000 and 25,000 psi (Design A and 13) which is ~-11 below - - 

l.hr: valuc!s 01' at lcast. 40,000 psi that both wire mnnuTar:Lurcrs ;lnd othc1 

in:.estigations suggest as maximum. However, long time relaxation dnta 

(beyond a few hundred hours) is not available from any other sources 

so the information provided in this spring investigation will serve 

to supplement the existin g data for long time space applications. 

It is apparent from the data that if a spring application requires 

a minimum of relaxation and load change over a period of time, the 

designer could use a "heat set" procedure to eliminate the initial change 

1cnCth in characteristics. In Lhis procedure Lhc spring rlcs i Kn wotild i nvol 1.c t Ilc 

sett.in$ of a free lcnxi-h crcatcr than dcsircd t1.v 7 01' 8"; :lntl the-n ":lsin<" tllc> 

sprin;r in the maximum "working" position and tcmpcrnt\lre for up to .I00 hours 

(200 hours minimum). The data (curves) in Figures 10 and 11 indicate this 

procedure would obtain the major relaxation change and provide a spring 

that under the same temperature condition would show very little additional 

change in length and load. 
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VII. CONCLUSIONS 

A review of available high temperature spring material characteris- 

tics led to the selection of Inconel 718 as the preferred material for 

long time operation in a 1000°F environment. Two springs were dcsiKncd 

using Inconel 718 and working length shear stress values of 35,000 psi. 

Samples were obtained and long time tests conducted. 

The final results indicated that with a maximum operating temperature 

of 1050@F, most (at least 80%) of the relaxation takes place in the first 

600 hours in the environment. A limited amount of additional relaxation 

was noted from 600 hours up to the 2000 hour test limit. The relaxation, 

or change in length (and therefore load for the specified operating length), 

averaged only 6%. 

Springs tested in a 1150°F temperature continued to relax even LIP to 

2000 hours. For example, after 600 hours the change was 12 to 18 percent 

(as compared with 6 percent for springs in the 105OOP temperature). How- 

ever, after 2000 hours at temperature, some of the samples had relaxed 

(free length had reduced) as much as 20%, so the load carrying ability was 

appreciably reduced. 

It is concluded that suitable springs can be built of Inconel 718 

for long time operation in a 1000°F environment. However, even short 

time operation at 1100 to 1150°F could cause appreciable relaxation 

and reduce the load-length characteristics of the Inconel 718 springs. 

This investigation, therefore, leads to these conclusions: 

1. Springs for long time operation in a 1OOOOF environment should 

be designed of Inconel 718 and proportioned to have relatively low shear 

stresses (25,000 to 30,000 psi). 
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II 

2. To obtain stability of the load length characteristics of Inconel 

718 sprints, the major relaxation could be eliminated by recognizing the 

change which will take place by increasing the original length (design) 

dimensions and then "aging" the springs at a temperature slightly (50°) 

above the operating temperature for up to 400 hours, prior to installation 

for the long time application. 
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Figure 1. Sample Springs Made of Inconel 718 for Endurance Test at 1050°F and 1105OF, 
Designated Design A and Design B. 
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Figure 3. Rupture Properties of Potential High Temperature Spring Materials, 
Showing a Parameter (P) Involving Temperature and Time at which 
Rupture Occurs at Various Stresses. 
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Figure 6. Photomicrographs (100X, Top and 1000X, Bottom) of 
Spring Design A, After Heat Treatment and Before Test. 
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~~~gl.;.re 7. Photomicrographs (100X, Top and 1000X, Bottom) of 
Spring Design B, After Heat Treatment and Before Test 
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Figure 8. Arrangement of SprVngs and Fixtures for Endurance Test 
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Figure 9. Sample High Temperature Springs Mounted on Test Fixture 
for Placement in Oven for Endurance Test. 
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Figure 14. Photomicrographs of Spring Sample #4 (Design A) 
(100X Top; 500X Bottom) After Relaxation Test 
for 1000 Hours at 1050°F. 
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Figure 15. Photomicrographs of Spring Sample #14 (Design B) 
(100X Top; 500X Bottom) After Relaxation Test 
for 1000 Hours at 1050°F. 
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TABLE I 

TYPICAL CHEMICAL COMPOSITION OF MATERIALS FOR HIGH TEMPERATURE SPRINGS 

Elements - Percent (Nominal) 
! I I I I 

! I 
REF.# MATERIAL C I Cr i Co / Fe 1 Ti ' Cb Al : Mo Mn w : Ni cu ) Si ! Other 

! 
I 1 I I / I 

. 1 Inconel X-750 - 15.0 - 7.0 1 2.5 1.0 0.9 1 - 0.5 - ; 73.1 - : - 1 
1 I 

I 
2 Inconel 718 - 18.4 - 19.2 0.9 

I 
5.3 0.5 - i 1 

i 
3.1 0.2 52.0 0.1 0.3 

I 
3 Rene'41 o.~ I 1g.o i ll.o 1 5.0 3.1 1.5 ! 9.8 50.5 Boron ! - - - - - 

, , I 50 pm. 

' 4 Udimet 500 0.1 17.5 16.5 4.0 2.9 - 2.9 4.0 0.5 - 51.1 - 0.5 

5 Udimet 700 0.1 15.0 18.5 3.2 4.2 5.0 0.4 53.6 Boron - - - - - 
.03 

6 Stellite L605 0.1 19.5 51.9 2.5 - - - - 1.4 14.5 10.0 - 0.1 
1 

I 7 I A286 Stainless I 0.1 1 15.0 1 - 1 53.5 1 2.0 1 - 1 0.3 f 1.3 1 1.5 1 - j 25.0 1 - ) L"x 1 ;;id: " / f 



TABLE 11 

MECHANICAL PROPERTIES OF CANDIDATE MATEKIALS FOR HI(ilI '175~1PI:'IL1'l'III~~ SPRINGS 

Material 
(Allor-) 

Elastic Modull~s. psi x 10 -6 

Mfp. Recommended 
Max. Service - Torsion (G) Tension (E) 

Temp. OF At Room Temp. A1 J1a.u Temp. Al Room Temp. At Max Temp. ~- ---- 

1. Inconel X750 l!.i~O 11..5 8.5 31.0 25.5 

2. Inconel 718 1200 11.2 8.0 29.6 24.5 

0 
a 3. Rene'41 1300 12.1 9.0 31.6 25.0 

4. Udimet 500 1200 11.7 9.6 31.0 25.7 

5. Udimet 700 1200 12.3 10.3 32.5 27.0 

6. L-605 1300 12.5 9.0. 32.6 23.0 

7. Stainless A286 950 10.5 8.4 29.1 25.0 



TABLE III 

RELAXATION OF ALLOY SPRINGS WITH VARIOUS STRESSES AT 1000°F (2) 

Temper(l) 
Hardening or Relaxation, % Load Loss 
Stabilizing Stress 5 10 20 50 100 140 

Treatment Hr Hr Hr Hr Hr Hr 

A286 

15% 16 hr., 1350'F 10,000 psi 5.0 5.0 5.0 5.0 5.0 5.0 
20,000 5.0 5.1 5.5 5.5 6.0 6.0 
40,000 5.8 6.3 6.4 6.8 7.5 7.5 
60,000 4.7 5.5 6.0 6.4 7.2 7.5 
80,000 6.0 6.8 8.2 9.0 10.0 10.0 

Inconel X-750 

15% 16 hr., 1350°F 10,000 7.0 8.0 9.0 10.0 12.0 13.0 
20,000 7.0 8.0 10.0 13.0 14.0 15.0 
40,000 9.3 10.5 12.5 15.5 20.0 21.7 
60,000 8.3 10.5 13.0 17.3 19.8 21.6 
80,000 10.0 12.0 15.5 21.0 25.0 41.0 

L605 

15% 16 hr., 1300°F 10,000 6.0 7.0 9.0 11.0 15.0 17.0 
20,000 6.5 7.0 9.0 12.5 15.0 17.5 
40,000 6.8 7.75 9.0 12.5 15.8 18.0 
60,000 5.0 6.7 8.6 12.5 16.0 18.3 
80,000 5.4 7.3 9.6 13.5 18.0 30.8 

Rene'41 

Annealed 16 hr., 1350°F 10,000 6.0 7.0 8.0 9.0 9.0 9.5 
20,000 6.5 6.5 8.0 9.0 10.0 10.0 
40,000 7.5 8.0 8.8 9.5 10.5 10.7 
GO ,000 6.3 6.7 7.7 8.6 9.3 9.3 
80,000 6.5 6.9 7.75 8.7 9.5 9.75 

155 16 hr., 1400°F 10,000 10.0 11.0 12.0 14.0 15.0 15.0 
20,000 9.5 10.0 11.5 13.5 15.0 15.0 
40,000 10.5 11.0 12.5 14.7 15.7 16.5 
60,000 9.15 10.3 12.5 15.0 16.3 17.0 
80,000 8.3 9.3 11.5 14.0 15.6 16.8 

(1) Percentages refer to reductions in area. 

(2) Information from Besemer and Stanton Paper -(Reference #3.) 
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TABLE IV 

SUMMARY OF SPRING STRESS RELAXATION TEST RESULTS (1) 

Average Percent 
1OOO'F Initial Stress Relaxation 

Material Stress (psi) in 100 Hours -_i--..-- -.-. --. .~ 

1. Inconel X-750 42,500 7.3 

40,000 5.8 

2. Inconel 718 53,500 3.3 

42,000 3.3 

41,300 4.2 

40,000 2.9 

3. Rene'41 

4. u-500 

3. u-700 

6. L-605 

47,000 3.7 

40,000 3.9 

48,400 3.7 

40,000 3.3 

53,400 10.7 

40,000 9.9 

51,600 30.4 

39,000 19.3 

(1) Tests made at General Electric Company, Aircraft Engine Group 
Materials Laboratory as part of their material investigation work 
and data made available for review in connection with the study 
work on this program. 
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TABLlZ V 

STRESS RELAXATION TEST RESULTS (1) 

HELICAL COMPRESSION SPRINGS MADE OF 1NCONFZL 718 

Spec. Temp Stress Percent Stress Relaxation at Indicat-ed Time. Xour --.-___--- 
NO. tl F .ps i 1 10 25 50 100 delay 90 days(') 100 250 500 1000 

1 

2 

7 

8 

11 

12 

9 

10 

1000 

1000 

1000 

1000 

1100 

1100 

1200 

1200 

41,300 

41,300 

40,000 

40,000 

40,000 

40,000 

40,000 

40,000 

3.9 4.1 4.3 4.9 4.9 4.3 4.5 4.5 4.5 

3.1 3.1 3.1 3.5 3.5 3.0 3 . 9 3 . 4 3 -1 . 

2.4 2.4 2.9 2.9 3.1 2.5 2.9 3.4 3.4 

2.1 2.2 2.5 2.5 2.7 2.1 2.5 2.9 2.9 

2.8 2.9 3.1 4.0 4.2 

2.9 3.1 3.5 3.8 3.9 

3.8 4.7 5.7 7.2 9.2 

3.1 5.0 6.8 8.6 10.6 

(1) Tests made at General Electric Company, Aircraft Engine Crollp Materials T,nboratnr~-. 
as part of their material investigation work and data made n\.ni lnble for rc\.ic\\' in 

(2) connection with the study work on this program. 
Kate the l/2% recovery that occurred after 90 days. This beha\,ior i s not uncommon. 
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TABLE Vl 

SUMMARY OF DATA FROM SPRING DESIGN A 

(1) (2) (3) (4) (5) 
Initi.al Design Force Too Low, Increased Wire Increase P/f, Check Values 

with Length Diameter d and as Stresses Column (4) 
Inconel 718 Increased Mean Diameter D Very Low At 1200'F -~--~ ____- - - 

cl 11.0 11.0 11.0 11.0 9.0 

O.D. 1.039 1.044 1.105 1.045 1.045 

d .094 .094 .105 .105 .105 

I.D. .851 .856 .a95 .a35 

D .945 .950 1.00 .940 

.835 

.940 

N 19 22 19 19 19 

P/f 6.0 6.0 8.67 10.6 8.67 

L free 

L 1 

L2 

2.917 3.583 3.250 3.245 3.245 

2.750 2.875 2.875 2.875 2.875 

2.375 2.500 2.500 2.500 2.500 

L solid 1.974 2.256 2.205 2.205 2.205 

P 1 

p2 

P 
S 

*1 

f2 

f 
S 

D/d 

1.0 4.25 3.25 3.93 3.21 

3.25 6.5 6.5 7.90 6.46 

5.65 7.96 9.06 11.0 9.02 

.167 .708 .375 .370 .370 

.542 1.083 .750 .745 .745 

.614 1.327 1.045 1.040 1.040 

10.05 8.95 

s1 

s2 

S 
S 

T 

4.3 

10.01 9.5 

14.0 8.2 9.4 

8.95 

7.8 

13.1 21.5 16.5 19.0 15.5 

18.7 26.5 23.0 26.5 22.0 

Room Room Room 
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TABLE VII 

SUMMARY OF DATA FOR SPRING DESIGN B 

(1) (2) (3) (4) 
Initial Design Modified Adjust Turns and Met Goals, 

with Dimensions for Length to Check at 
Inconel 718 Preferred Design Reduce Stress 1200'F 

G 11.0 11.0 11.0 9.0 

O.D. 1.968 2.322 2.4 2.4 

d .192 .192 ,192 -192 

I.D. 1.584 

D 1.776 

1.938 2.008 2.008 

2.130 2.200 2.200 

s 5 4 3.6 3.6 

P/f 67 48.5 48.4 39.6 

L 
free 2.153 1.955 1.777 1.777 

L 1 1.680 1.450 1.312 1.312 

L 2 1.556 1.326 1.188 1.188 

L solid 1.344 1.152 1.075 1.075 

P 1 31.7 24.0 22.5 18.4 

P 2 40.0 30.5 28.5 23.3 

P 
S 

f 1 

54.3 39.0 34.0 27.8 

.473 

f2 

f 
S 

D >:d 

.597 

. 505 

.629 

.465 .465 

.589 

.809 .803 

.589 

.702 .702 

9.25 11.1 11.5 11.5 

3 

s2 

S 
S 

T 

23 21 20 19 

29 26 25 20 

40 34 30 25 

Room Room Room 1200'F 
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TABLE VIII 

LOAD, DEFIECTION,AND LENGTH DATA FOR SPRINGS DESIGN A 

(PRIOR TO ENDURANCE TESTS) 

* 
Load (lb.) for Deflection (and Length) Shown -. -- ..~ 

Spring if Free Length 0.15" 0.30" 0.45" 0.60" 0.75" 

8 

1 3.26 

2 3.26 

3 3.24 

4 3.26 

5 3.25 

3.26 

3.26 

3.25 

1.44 3.06 4.69 6.31 7.94 
(3.11) (2.96) (2.81) (2.66) (2.51) 

1.38 3.03 4.66 6.31 7.97 
(3.11) (2.96) (2.81) (2.66) (2.51) 

1.63 3.25 4.84 6.50 8.12 
(3.09) (2.94) (2.79) (2.64) (2.49) 

1.41 3.03 4.66 6.28 7.91 
(3.11) (2.96) (2.81) (2.66) (2.51) 

1.53 3.16 4.78 6.41 8.03 
(3.10) (2.95) (2.80) (2.65) (2.50) 

1.41 3.03 4.66 6.28 7.91 
(3.11) (2.96) (2.81) (2.66) (2.51) 

1.44 3.06 4.72 6.34 8.00 
(3.11) (2.96) (2.81) (2.66) (2.51) 

1.50 
(3.10) 

3.16 4.81 6.44 8.06 
(2.95) (2.80) (2.65) (2.50) 

* 
Numbers in parenthesis in Table are actual measured lengths. 

45 



TABLE IX 

LOAD, DEFLECTION,AND LENGTH DATA FOR SPRINGS DESIGN B 

(PRIOR TO ENDURANCE TESTING) 

Load (lbs.) for Deflection (and Length) Shown* 

Spring r" Free Length 0.10" 0.20" 0.30" 0.40" 0.50" --_ i-i 

12 1.78 

13 1.79 

14 1.80 

15 1.80 

16 1.81 

17 1.81 

?. 1 1.81 

18 1.81 

2.88 7.56 12.38 17.12 22.00 
(1.71) (1.61) (1.51) (1.41) (1.31) 

4.06 8.88 13.62 18.50 23.38 
(1.68) (1.58) (1.48) (1.38) (1.28) 

2.81 7.50 12.25 17.06 22.12 
(1.69) (1.59) (1.49) (1.39) (1.29) 

3.56 8.38 13.38 17.88 22.88 
(1.70) (1.60) (1.50) (1.40) (1.30) 

2.94 7.44 12.19 17.00 21.75 
(1.70) (1.60) (1.50) (1.40) (1.30) 

3.31 7.50 12.00 16.88 
(1.71) (1.61) (1.51) (1.41) 

3.31 
(1.71) 

2.94 
(1.71) 

7.75 12.38 17.12 
(1.61) (1.51) (1.41) 

7.44 12.00 lci.88 
(1.61) (1.51) (1.41) 

* 
Numbers in parenthesis in Table are actual measured : lengths. 

21.94 
(1.31) 

22.19 
(1.31) 

21.88 
(1.31) 
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TABLE? X 

SPRING SAMPLR DATA AND TEST ARRANGEMENTS - 

Initial Characteristics _____. .--.-. _-- Test Conditions 

Pos. 1 (2) Pos. 2 (3) Located In Test Load 

Sample 
Number 

Free ('I Test Forcej4) Test Force:4) Fixture #c5j 
Length Length lb. Length lb. Solid Working -- - i - _- .-~----~ --- 

1 3.26" 2.80 
2 3.26 
3" 3.24 

4 z? 3.26 

5 .+ 
6 z 

3.25 
n 3.26 

7 3.26 I 
8 ‘ 3.25 2.80 

11 
12 
13 = 
14 g 
15 "' 
16 & 
17 
18 

4.7 2.50 7.9 I 
4.6 8.0 II 
4.. 8 8.1 I 
4.6 7.9 II 
4.7 8.0 IV 
4.6 7.8 III 
4.7 8.0 III 
4.8 2.50 8.1 IV 

23.8 1.19 29.8 I 
23.2 29.0 I 
23.5 28.4 II 
22.9 28.7 II 
23.5 29.1 III 
23.4 29.1 III 
23.8 29.4 IV 
23.7 1.19 29.2 IV 

X 
X 

X 
X 

X 
X 

X 
X 

X 

X 

X 

X 

(1) Measured by comparator or vernier calipers, on center line between spring ends. 
(2) Position 1 - initial operating position. 
:31 Position 2 - Final operating position, used for one of endurance test condi- 

tions. NOTE : Other test condition was with spring essentially 
solid. Length was 2.20" and 1.05". respectively. 

(4) All values of force determined (based on straight line) from load/deflection 
data. 

(5) Fixture I - for 1050°F - Long time test; i.e., springs at temperature for 
lOOO-hour periods. 

Fixture II - for 1050°F - Interrupted tests; i.e., springs removed from heat 
for periodic measurements. 

Fixture III - for l150°F - Long time test. 

Fixture IV - for 1150°F - Interrupted tests. 
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TABLE XI 

SUMMARY OF DATA FROM "INTERRUPTED" ENDURANCE TEST .- - 
AT 1050°F TEMPERATURE 

Sample No. 

Initial Free Length 

Test Condition - Load 
Length 
Temp."F 

Deflection Under Load 

After 101 Hours 

2 4 13 14 

3.26 3.26 1.79 1.80 

mg. Solid Solid mz. 
2.50 2.20 1.05 1.19 
1050 1050 1050 1050 

0.76 1.06 0.74 0.61 

Free Length 
(1) Length Reduction 

Relaxation % 

3.23 3.21 1.77 1.78 
.03 .05 .02 .02 

3.9 4.7 2.7 3.3 

After 195 Hours 

Free Length 3.22 3.20 1.76 1.77 
Length Reduction .04 .06 .03 .03 
Relaxation % 5.3 5.7 4.1 4.9 

After 427 Hours 

Free Length 3.22 3.19 1.76 1.76 
Length Reduction .04 .07 .03 .04 
Relaxation % 5.3 6.6 4.1 6.6 

After 619 Hours 

Free Length 
Length Reduction 
Relaxation % 

3.22 3.19 
.04 .07 

5.3 6.6 

After 808 Hours 

1.75 
.04 

5.4 

1.75 
.04 

5.4 

1.75 
.04 

5.4 

1.75 
.04 

5.4 

1.76 
.04 

6.6 

Free Length 3.22 3.19 
Length Reduction .04 .07 
Relaxation % 5.3 6.6 

After 1000 Hours 

Free Length 
Length Reduction 
Relaxation % 

After 2000 Hours 

Free Length 
Length Reduction 
Relaxation % 

3.21 3.19 
.05 .07 

6.6 6.6 

3.21 3.17(2) 
.05 .09 

6.6 8.3 

(1) Relaxation (%I = Free Length Reduction 
Deflection Under Load x 100 

1.76 
. o-1 

6.6 

1.76 
.04 

6.6 

1.7Q2) 
.04 

6.6 

(2) Spring had a piece cut off the end of the last turn which could have affected 
the length measurement enough to alter the active relaxation data. 
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TARLE XII 

SUMMARY OF DATA FROM "INTERRUPTED" ENDURANCE TEST 

AT 1150'F TEMPERATURE 

Sample No. 

Initial Free Length _-- 
Test Condition - Load 

Length 
Temp."F 

5 

3.25 

ME. 
2.50 
1150 

Deflection Under Load 

rlfter 101 Hours 

0.75 

8 17 18 

3.25 1.81 1.81 

Solid Solid WICK. 
2.20 1.05 1.19 
1150 1150 1150 

1.05 0.76 0.63 

Free Length 3.19 3.16 1.74 1.77 

(1) 
Length Reduction .06 .09 .07 .04 
helaxation % 8.0 8.6 9.2 6.5 

After 195 Hours 

Free Length 3.18 3.15 1.73 1.75 
Length Reduction .07 .lO .08 .06 
Relaxation % 9.3 9.5 10.5 9.7 

After 427 Hours 

Free Length 3.16 3.11 1.70 1.74 
Length Reduction .09 .14 .ll .07 
Relaxation % 12.0 13.3 14.5 11.3 

After 619 Hours 

Free Length 3.13 3.11 1.69 1.73 
Length Reduction .12 . 14 .12 .08 
Relaxation % 16.0 13.3 15.8 12.9 

After 808 Hours 

Free Length 3.12 3.10 1.67 1.73 
Length Reduction . 13 .15 .14 .08 
Relaxation % 17.3 14.3 18.4 12.9 

After 1000 Hours 

Free Length 
Length Reduction 
Relaxation % 

After 2000 Hours 

Free Length 
Length Reduction 
Relaxation % 

(1) Relaxation (%) = 

3.10 
. 15 

20.0 

-- 
-- 
-- 

Free Length Reduction 
Deflection Under Load 

3.09 
.16 

15.2 

-- 
-- 
-- 

x 100 

1.66 
.15 

19.7 

-- 
-- 
-- 

1.72 
.09 

14.5 

-- 
-- 
-- 
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TABLE XIII 

S1JMMARY OF 1>.4'fA FROM LONG TIME (1000 HOUR PERIOD) TESTS -- _._-. - __- 

AT 1050°F TEMPERATURE 

Sample TO. 

Unit Free Length - 

TesL Condition - Load 

Length 

Tcmp.CF 

D~fle~(.ion tinder Load -___ 

.A I tc:v 1000 IIours 

1 3 11 12 

3.26 3.24 1.81 1.78 

mg. Solid Solid Wkg. 

2.50 2.20 1.05 1.19 

1050 1050 1050 1050 

.76 1.04 .76 .59 

Lcn$h I<edLicri.on 

Rclasation '?~'l) 

.4ftcr 2000 Hours 

Free Lengt h 

3.20 3.17 1.75 

.06 .07 .06 

7.9 6.7 7.9 

(2) (2) 

Length Reduction 

(1) Relaxation (%I = Free Length Reduction = 
Deflection Under Load 

100 

(2) 

1.7-L 

.04 

6.8 

(2) 

(21 During final lOOO-hour test period the furnace temperntln-e for the 1050°F 
test apparently went above set point for some limited time,, causin? com- 
plete relaxation but not annealing of the spring material. 
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SUMMARY .-- 

Sample So. 6 7 15 

Unit Free Length 3.26 3.26 1.80 

Test Condition - Load mg. 

Length 2.50 

Temp.OF 1150 

Solid Solid 

TABLE XIV 

OF DATA FROM LONG TIME (1000 HOUR PERIOD) TEXTS 

AT 1150“F TRMPERATURR 

Deflection Under Load 

After 1000 Hours 

.76 1.06 .75 .62 

Free Length 3.19 

Length Reduction .07 

Relaxation % (1) 9.2 

3.08 1.70 

.18 .lO 

17.0 13.3 

1.75 

.OG 

9.7 

After 2000 Hours 

Free Length 3.11 

Length Reduction . 15 

Relaxation % 19.7 

3.03 1.69 

.23 .ll 

14.7 

1.73 

.08 

21.7 12.9 

2.20 

1150 

1.05 

1150 

16 .- 

1.81 

Wkg. 

1.19 

1150 

(1) Relaxation (%I = Free Length Reduction 
Deflection Under Load = 100 
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TABL& XV 

LOAD, DEFLECTION DATA FOR FOUI~ SPRINTS BEFORE .~ND wrtw 1000 HOURS tl-r lo5o"v 

Spring Sample 
Before Test 

Sumber Deflection Load Length L0cr ti Ie Ii:"1 il -- 

2 0.150" 1.38 3.11 1.40 3 . 0 :3 

1 3 

14 

0.300 3.03 2.96 3.03 2.91 

0.450 4.66 2.81 4.66 2.76 

0.600 6.31 2.66 6.34 2.61 

0.750 7.97 2.51 8.03 2.46 

0,150 1.41 3.11 1.47 3.02 

0.300 3.03 2.96 3.09 2.57 

0.450 4.66 2.81 4.75 2. 7" 

0.600 6.28 2.66 6.37 2.57 

0.750 

0.100 

0.200 

0.300 

0.400 

0.500 

0.100 

0.200 

0.300 

0.400 

0.500 

7.91 2.51 8.06 2.42 

2.81 1.69 3.06 1.65 

7.50 1.59 7.75 1.55 

12.25 1.49 12.50 1.45 

17.06 1.39 17.37 1.35 

22.12 1.29 22.44 1.25 

3.56 1.70 3.00 1.M 

8.38 1.60 7.37 1.36 

13.38 1.50 

17.88 1.40 

22.88 1.30 

12.50 1.46 

17.75 1.36 

23.00 1.26 
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